Exercise 77

Find the 50th derivative of $y=\cos 2 x$.

Solution

Differentiate the function several times using the chain rule and see if a pattern emerges.

$$
\begin{aligned}
& y^{(1)}=\frac{d}{d x}(\cos 2 x)=-2^{1} \sin 2 x \\
& y^{(2)}=\frac{d}{d x}(-2 \sin 2 x)=-2^{2} \cos 2 x \\
& y^{(3)}=\frac{d}{d x}\left(-2^{2} \cos 2 x\right)=2^{3} \sin 2 x \\
& y^{(4)}=\frac{d}{d x}\left(2^{3} \sin 2 x\right)=2^{4} \cos 2 x \\
& y^{(5)}=\frac{d}{d x}\left(2^{4} \cos 2 x\right)=-2^{5} \sin 2 x
\end{aligned}
$$

It appears that even derivatives have cosine and that derivatives of order $1+4 n$ and $2+4 n$ are negative, where n is an integer. Since $50=2+4(12)$, the 50 th derivative is negative.

$$
y^{(50)}=-2^{50} \cos 2 x
$$

